Чем связаны вирусы и молекулы. Молекулярный уровень химическая организация клетки. Роль вирусов в биосфере

<Бактериофаг>


Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты.

Многие вирусы являются возбудителями заболеваний, таких как СПИД , коревая краснуха , эпидемический паротит (свинка), ветряная и натуральная оспа. Вирусы имеют микроскопические размеры, многие из них способны проходить через любые фильтры. И отличие от бактерий, вирусы нельзя выращивать на питательных средах, так как вне организма они не проявляют свойств живого. Вне живого организма (хозяина) вирусы представляют собой кристаллы веществ, не имеющих никаких свойств живых систем.

История

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что табачная мозаика вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов. В 1901 году было обнаружено первое вирусное заболевание человека - жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами. В 1911 году Фрэнсис Раус доказал вирусную природу рака - саркомы Рауса (лишь в 1966 году, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине). В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов. В 2002 году в Нью-Йоркском университете был создан первый синтетический вирус (вирус полиомиелита).

Строение вирусов

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг неё оболочку - капсид. Примеров таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. Сложно организованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа и герпеса. Их наружная оболочка - это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. Зрелые вирусные частицы называются вирионами. Фактиче¬ски они представляют собой геном, покрытый сверху белковой оболочкой. Эта оболочка- капсид. Она построена из белковых молекул, защищающих генетический материал вируса от воз¬действия нуклеаз - ферментов, разрушающих нуклеиновые кис¬лоты. У некоторых вирусов поверх капсида располагается суперкапсидная оболочка, также построенная из белка. Генетический материал представлен нуклеиновой кислотой. У одних вирусов это ДНК (так называемые ДНК-овые вирусы), у других - РНК (РНК-овые вирусы). РНК-овые вирусы также называют ретровирусами, так как для синтеза вирусных белков в этом случае необходима обратная транскрипция, которая осуществляется ферментом - обратной транскриптазой (ревертазой) и представляет собой синтез ДНК на базе РНК.

Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане - около 4×1030, а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока . В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены . Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования раз в несколько лет сокращает численность песцов в несколько раз).

Положение вирусов в системе органического мира

Происхождение вирусов

Структура

Вирусные частицы (вирио́ны) представляют собой белковую капсулу - капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров - белковых комплексов, состоящих, в свою очередь, из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (парвовирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Механизм инфицирования

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:

1. Присоединение к клеточной мембране - так называемая адсорбция. Обычно для того, чтобы вирион адсорбировался на поверхности клетки, она должна иметь в составе своей плазматической мембраны белок (часто гликопротеин) - рецептор, специфичный для данного вируса. Наличие рецептора нередко определяет круг хозяев данного вируса, а также его тканеспецифичность. 2. Проникновение в клетку. На следующем этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) в её ядре. 3. Перепрограммирование клетки. При заражении вирусом в клетке активируются специальные механизмы противовирусной защиты. Заражённые клетки начинают синтезировать сигнальные молекулы - интерфероны, переводящие окружающие здоровые клетки в противовирусное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом или программируемой клеточной смерти. От способности вируса преодолевать системы противовирусной защиты напрямую зависит его выживание. Неудивительно, что многие вирусы (например, пикорнавирусы, флавивирусы) в ходе эволюции приобрели способность подавлять синтез интерферонов, апоптозную программу и так далее. Кроме подавления противовирусной защиты, вирусы стремятся создать в клетке максимально благоприятные условия для развития своего потомства. 4. Персистенция. Некоторые вирусы могут переходить в латентное состояние, слабо вмешиваясь в процессы, происходящие в клетке, и активироваться лишь при определённых условиях. Так построена, например, стратегия размножения некоторых бактериофагов - до тех пор, пока заражённая клетка находится в благоприятной среде, фаг не убивает её, наследуется дочерними клетками и нередко интегрируется в клеточный геном. Однако при попадании заражённой лизогенным фагом бактерии в неблагоприятную среду, возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги. Клетка превращается в фабрику, способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов (например, паповавирусов) связаны некоторые онкологические заболевания. 5. Созревание вирионов и выход из клетки. В конце концов, новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая её разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.

История исследований

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский и др . После многолетних исследований заболеваний табачных растений , в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что табачная мозаика вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов.

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии , иммунологии , молекулярной генетики и других разделов биологии. Так, эксперимент Херши - Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы ещё как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

Строение

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг неё оболочку - капсид . Примером таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. Сложно организованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы . Примером сложно организованных вирусов служат возбудители гриппа и герпеса . Их наружная оболочка - это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду.

Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане - около 4·10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока . В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены . Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования с периодом в несколько лет сокращает численность песцов в несколько раз).

Положение вирусов в системе живого

Происхождение вирусов

Вирусы - сборная группа, не имеющая общего предка. В настоящее время существует несколько гипотез, объясняющих происхождение вирусов.

Происхождение некоторых РНК-содержащих вирусов связывают с вироидами . Вироиды представляют собой высокоструктурированные кольцевые фрагменты РНК, реплицируемые клеточной РНК-полимеразой . Считается, что вироиды представляют собой «сбежавшие интроны » - вырезанные в ходе сплайсинга незначащие участки мРНК , которые случайно приобрели способность к репликации . Белков вироиды не кодируют. Считается, что приобретение вироидами кодирующих участков (открытой рамки считывания) и привело к появлению первых РНК-содержащих вирусов. И действительно, известны примеры вирусов, содержащих выраженные вироид-подобные участки (вирус гепатита Дельта).

Примеры структур икосаэдрических вирионов.
А. Вирус, не имеющий липидной оболочки (например, пикорнавирус).
B. Оболочечный вирус (например, герпесвирус).
Цифрами обозначены: (1) капсид, (2) геномная нуклеиновая кислота, (3) капсомер, (4) нуклеокапсид, (5) вирион, (6) липидная оболочка, (7) мембранные белки оболочки.

Отряд (-virales ) Семейство (-viridae ) Подсемейство (-virinae ) Род (-virus ) Вид (-virus )

Классификация Балтимора

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК. Эта система включает в себя семь основных групп :

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы , поксвирусы , паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы , флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

В настоящее время, для классификации вирусов используются обе системы одновременно, как дополняющие друг друга .

Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.

Вирусы в массовой культуре

В литературе

  • S.T.A.L.K.E.R. (фантастический роман)

В кинематографе

  • Обитель зла » и его продолжениях.
  • В фантастическом фильме ужасов «28 дней спустя » и его продолжениях.
  • В сюжете фильма-катастрофы «Эпидемия » присутствует вымышленный вирус «мотаба», описание которого напоминает реальный вирус Эбола .
  • В фильме «Добро пожаловать в Зомбилэнд ».
  • В фильме «Лиловый шар ».
  • В фильме «Носители ».
  • В фильме «Я - Легенда ».
  • В фильме «Заражение ».
  • В фильме «Репортаж ».
  • В фильме «Карантин ».
  • В фильме «Карантин 2: Терминал ».
  • В сериале «Регенезис ».
  • В телесериале «Ходячие мертвецы ».
  • В телесериале «Закрытая школа ».
  • В фильме «Носители ».

В мультипликации

В последние годы вирусы нередко становятся «героями» мультфильмов и мультсериалов, среди которых следует назвать, например, «Осмозис Джонс» (США), 2001), «Оззи и Дрикс» (США , 2002-2004 гг.) и «Вирус атакует » (Италия , 2011).

Примечания

  1. На английском языке . В латинском языке вопрос о множественном числе данного слова является спорным. Слово лат. virus принадлежит редкой разновидности II склонения, словам среднего рода на -us: Nom.Acc.Voc. virus, Gen. viri, Dat.Abl. viro. Так же склоняются лат. vulgus и лат. pelagus ; в классической латыни множественное число зафиксировано только у последнего: лат. pelage , форма древнегреческого происхождения, где η<εα.
  2. Таксономия вирусов на сайте Международного комитета по таксономии вирусов (ICTV) .
  3. (англ.) )
  4. Cello J, Paul AV, Wimmer E (2002). «Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template». Science 297 (5583): 1016–8. DOI :10.1126/science.1072266 . PMID 12114528 .
  5. Bergh O, Børsheim KY, Bratbak G, Heldal M (August 1989). «High abundance of viruses found in aquatic environments». Nature 340 (6233): 467–8. DOI :10.1038/340467a0 . PMID 2755508 .
  6. Элементы - новости науки: Разрушая бактериальные клетки, вирусы активно участвуют в круговороте веществ в глубинах океана

Органические вещества в живой природе

Органические вещества лежат в основе всей живой природы. Растения и животные, микроорганизмы и вирусы - все живые существа состоят из огромного количества различных органических веществ и сравнительно небольшого числа неорганических. Именно соединения углерода, благодаря их великому разнообразию и способности к многочисленным химическим превращениям, явились той основой, на которой возникла жизнь во всех ее проявлениях. Носителями тех свойств, которые включаются в понятие «жизнь», являются сложные органические вещества, молекулы которых содержат цепи из многих тысяч атомов - биополимеры.

Прежде всего это белки - носители жизни, основа живой клетки. Сложные органические полимеры - белки состоят главным образом из углерода, водорода, кислорода, азота и серы. Их молекулы образованы соединением очень большого числа простых молекул - так называемых аминокислот (см. ст. «Химия жизни»).

Существует очень много разных белков. Есть белки опорные, или структурные. Такие белки входят в состав костей, образуют хрящи, кожу, волосы, рога, копыта, перья, чешую рыб. В состав мышц структурные белки входят вместе с белками, выполняющими сократительные функции. Сокращение мышц (важнейшая роль белков этого типа) - это превращение части химической энергии таких белков в механическую работу. Очень большая группа белков регулирует химические реакции в организмах. Это ферменты (биологические катализаторы). В настоящее время их известно более тысячи. Высокоразвитые организмы умеют вырабатывать еще и защитные белки - так называемые антитела, которые способны осаждать или связывать и тем обезвреживать проникшие извне в организм посторонние вещества и тела.

Наряду с белками важнейшие функции жизни несут нуклеиновые кислоты. В живом организме всегда происходит обмен веществ. Постоянно обновляется состав почти всех его клеток. Обновляются и белки клеток. Но ведь для каждого органа, для каждой ткани нужно изготовить свой особенный белок, со своим неповторимым порядком аминокислот в цепи. Хранители этого порядка - нуклеиновые кислоты. Нуклеиновые кислоты являются своего рода шаблонами, по которым организмы строят свои белки. Часто образно говорят, что в них записан код синтеза белка. Для каждого белка - свой код, свой шаблон. У нуклеиновых кислот есть еще одна функция. Они шаблоны и для самих нуклеиновых кислот. Это своего рода «запоминающее устройство», при помощи которого каждый вид живых существ передает из поколения в поколение коды построения своих белков (см. ст. «Химия жизни»).

Опорные функции в живой природе выполняют не только белки. В растениях, например, опорные, скелетные вещества - целлюлоза и лигнин. Это тоже полимерные вещества, но совсем другого типа. Длинные цепи атомов целлюлозы построены из молекул глюкозы, относящейся к группе Сахаров. Поэтому целлюлозу относят к полисахаридам. Строение лигнина до сих пор окончательно не установлено. Это тоже полимер, по-видимому, с сетчатыми молекулами. А у насекомых опорные функции выполняет хитин - тоже полисахарид.

Есть большая группа веществ (жиры, сахара, или углеводы), которые переносят и запасают химическую энергию. Они (вместе с белками пищи) являются запасным строительным материалом, необходимым для образования новых клеток (см. ст. «Химия пищи»). Множество органических веществ (витамины, гормоны) в живых организмах играют роль регуляторов жизнедеятельности. Одни регулируют дыхание или пищеварение, другие - рост и деление клеток, третьи - деятельность нервной системы и т. п. В живых организмах содержатся многочисленные вещества самых разнообразных назначений: красящие, которым мир цветов обязан своей красотой, пахучие - привлекающие или отпугивающие, защищающие от внешних врагов, и много других. Растения и животные, даже каждая отдельная клетка - это маленькие, но очень сложные лаборатории, в которых возникают, превращаются и разлагаются тысячи органических веществ. Многочисленные и разнообразные химические реакции протекают в этих лабораториях в строго определенной последовательности. Создаются, растут и затем распадаются сложнейшие структуры...

Мир органических веществ окружает нас, мы сами состоим из них, и вся живая природа, среди которой мы живем и которую мы постоянно используем, состоит из органических веществ.


Строение природного полимера - белка фиброина шелка. Отдельные полимерные цепи соединены между собой водородными связями (пунктир).

Наш обзор, в котором клетки рассматриваются как единицы живой материи, не может быть полным, если мы не коснемся вирусов. Хотя вирусы и не являются живыми, они представляют собой образующиеся биологическим путем надмолекулярные комплексы, которые способны к самовоспроизведению в соответствующих клетках-хозяевах. Вирус состоит из молекулы нуклеиновой кислоты и окружающей ее защитной оболочки, или капсида, построенной из белковых молекул. Вирусы существуют в двух состояниях.

Рис. 2-23. Электронная микрофотография клеточной стенки растений. Стенка состоит из перекрещивающихся слоев целлюлозных волокон, погруженных в органический «клей». Стенки растительных клеток очень прочны, по своей структуре они напоминают бетонную плиту, укрепленную стальной арматурой.

Рис. 2-24. Репликация бактериофага в клетке-хозяине.

Одни вирусы содержат ДНК, а другие - РНК.

Известны сотни различных вирусов, специфичных в отношении определенных типов клеток-хозяев. Роль хозяев могут играть клетки животных, растений или бактерий (табл. 2-3). Вирусы, специфичные для бактерий, называются бактериофагами, или просто фагами (слово «фаг» означает поедать, поглощать). Капсид вирусов может быть построен из белковых молекул только одного типа, как это имеет место, например, в случае вируса табачной мозаики - одного из простейших вирусов, который первым был получен в кристаллическом виде (рис. 2-25). Другие вирусы могут содержать десятки и сотни белков различных типов. Размеры вирусов варьируют в широких пределах. Так, один из самых мелких вирусов, бактериофаг фХ174, имеет диаметр 18 нм, тогда как один из самых крупных вирусов - вирус осповакцины - по размерам своих частиц соответствует самым мелким бактериям. Вирусы различаются также по форме и степени сложности их структуры. К числу наиболее сложных относится бактериофаг Т4 (рис. 2-25), для которого клеткой-хозяином служит Е. coli. Фаг Т4 имеет головку, отросток («хвост») и сложный набор хвостовых нитей; при введении вирусной ДНК в клетку-хозяина они действуют совместно как «жало» или шприц для подкожных инъекций. На рис. 2-25 и в табл. 2-3 приведены данные о размерах, форме и массе частиц ряда вирусов, а также тип и величина входящих в их состав молекул нуклеиновых кислот. Некоторые вирусы необычайно патогенны для человека. К ним относятся, в частности, вирусы, вызывающие оспу, полиомиелит, грипп, простудные заболевания, инфекционный мононуклеоз и опоясывающий лишай. Считают, что причиной рака у животных также являются вирусы, которые могут находиться в латентном состоянии.

Таблица 2-3. Свойства некоторых вирусов

Вирусы играют все более важную роль в биохимических исследованиях, поскольку с их помощью удается получать необычайно ценную информацию о структуре хромосом, механизмах ферментативного синтеза нуклеиновых кислот и регуляции передачи генетической информации.

Углеводы состоят из...

углерода, водорода и кислорода

углерода, азота и водорода

углерода, кислорода и азота

Углеводы , или сахариды , - одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов. Углеводы состоят из углерода, водорода и кислорода. Название, они получили потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в молекуле воды.

Общая формула углеводов: Сn (Н 2 О)m. Примерами могут служить глюкоза — С 6 Н 12 О 6 и сахароза — С 12 Н 22 О 11 . В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые, или моносахариды , и сложные, или полисахариды . Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Функции углеводов: энергетическая, строительная, защитная, запасающая.

Определи из предложенных полисахариды.

крахмал, гликоген, хитин…

глюкоза, фруктоза, галактоза

рибоза, дезоксирибоза

Ди- и полисахариды образуются путём соединения двух и более моносахаридов. Дисахариды по своим свойствам близки к моносахаридам. И те, и другие хорошо растворимы в воде и имеют сладкий вкус. Полисахариды состоят из большого числа моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и другие.

Нарушение природной структуры белка.

денатурация

ренатурация

дегенерация

Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. Этот процесс частично обратим: если не разрушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Таким образом, что все особенности строения макромолекулы белка определяются его первичной структурой.

Функция, благодаря которой происходит ускорение биохимических реакций в клетке.

каталитическая

ферментативная

оба ответа правильные

Ферменты (или биокатализаторы) – это молекулы белков, работающие как биологические катализаторы, в тысячи раз увеличивающие скорость химических реакций. Чтобы крупные органические молекулы вступили в реакцию, им недостаточно простого контакта. Необходимо, чтобы функциональные группы этих молекул были обращены друг к другу и никакие другие молекулы не мешали их взаимодействию. Вероятность того, что молекулы сами сориентируются нужным образом, ничтожна мала. Фермент же присоединяет к себе обе молекулы в нужном положении, помогает ми избавиться от водяной плёнки, поставляет энергию, убирает лишние части и освобождает готовый продукт реакции. При этом сами ферменты, подобно другим химическим катализаторам, не изменяются в результате прошедших реакций и выполняют свою работу снова и снова. Для функционирования каждого фермента имеются оптимальные условия. Одни ферменты активны в нейтральной, другие – в кислой или щелочной среде. При температуре свыше 60ºС большинство ферментов не функционирует.

Функция сократительных белков.

двигательная

транспортная

защитная

Двигательная функция белков выполняют особые сократительные белки. Благодаря им двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов.

Жгутик всех эукариотических клеток имеет длину около 100 мкм. На поперечном срезе можно увидеть, что по периферии жгутика расположены 9 пар микротрубочек, а в центре — 2 микротрубочки. Все пары микротрубочек связаны между собой. Белок, осуществляющий это связывание, меняет свою конформацию за счёт энергии, выделяющейся при гидролизе АТФ. Это приводит к тому, что пары микротрубочек начинают двигаться друг относительно друга, жгутик изгибается и клетка начинает движение.

Функция белков, благодаря которой гемоглобин переносит кислород из лёгких к клеткам других тканей и органов.

транспортная

двигательная

оба ответа правильные

Важное значение имеет транспортная функция белков. Так, гемоглобин переносит кислород из лёгких к клеткам других тканей и органов. В мышцах эту функцию выполняет белок гемоглобин. Белки сыворотки крови (альбумин) способствуют переносу липидов и жирных кислот, различных биологически активных веществ. Присоединяя кислород, гемоглобин из синеватого становится алым. Поэтому кровь, в которой много кислорода, отличается по цвету от крови, в которой его мало. Транспортные белки в наружной мембране клеток переносят различные вещества из окружающей среды в цитоплазму.

Функция белка, поддерживающая постоянную концентрацию веществ в крови и клетках организма. Участвуют в росте, размножении и других жизненно важных процессах.

ферментативная

регуляторная

транспортная

Регуляторная функция присуща белкам – гормонам. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. В присутствии вещества-регулятора начинается считывание определённого участка ДНК. Производимый данным геном белок начинает длинную цепочку превращений веществ, проходящих через ферментативный комплекс. В конце концов вырабатывается вещество-регулятор, которое останавливает считывание или переводит его на другой участок. При этом именно информация ДНК определяет, какие вещества производить, а конечный продукт синтеза блокирует ДНК и приостанавливает весь процесс. Другой путь: ДНК блокируется веществом, появившимся в результате деятельности управляющих систем организма: нервной или гуморальной. Конечно, в указанной цепи может быть большое количество посредников. Есть, например, целая группа белков-рецепторов, которые посылают управляющий сигнал в ответ на изменение внешней или внутренней среды.

В состав молекулы ДНК входят азотистые основания...

аденин, гуанин, цитозин, тимин

аденин, гуанин, лейцин, тимин

нет правильного ответа

В состав молекулы ДНК входят четыре типа азотистых оснований: аденин, гуанин, цитозин и тимин. Они и определяют названия соответствующих нуклеотидов.

Определи состав нуклеотида.

остаток фосфорной кислоты, цитидин, углевод

азотистое основание, углевод, ДНК

азотистое основание, углевод, остаток фосфорной кислоты

Каждый нуклеотид состоит из трёх компонентов, соединённых прочными химическими связями. Это азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты.

Название связи между аденином и тимином при образовании двуцепочной молекулы ДНК.

одинарная

двойная

тройная

Молекула ДНК представляет собой двойной ряд нуклеотидов, сшитых в продольном и поперечном направлении Каркасом её структуры служат углеводы, надёжно связанные фосфатными группами в две цепочки. Между цепями «лесенкой» расположены азотистые основания, притянутые друг к другу слабыми водородными связями (в случае аденин-тимин — связь двойная ).

Определи состав аденозинтрифосфата:

аденин, урацил, два остатка фосфорной кислоты

аденин, рибоза, три остатка фосфорной кислоты

Нуклеиновая кислота аденозинтрифосфата (АТФ) состоит из одного-единственного нуклеотида и содержит две макроэргические (богатые энергией) связи между фосфатными группами. АТФ совершенно необходима в каждой клетке, так как она играет роль биологического аккумулятора — переносчика энергии. Она нужна везде, где происходит запасание энергии или её освобождение и использование, то есть практически в любой биохимической реакции, поскольку подобные реакции происходят в каждой клетке почти непрерывно, каждая молекула АТФ разряжается и вновь заряжается, например, в организме человека в среднем один раз в минуту. АТФ содержится в цитоплазме, митохондриях, пластидах и ядрах.

вирус



Статьи по теме