Гелий3 - мифическое топливо будущего. Луна и грош, или история гелиевой энергетики Аномальные зоны России

Этот изотоп планируется добывать на Луне для нужд термоядерной энергетики. Однако это дело далекого будущего. Тем не менее гелий-3 чрезвычайно востребован уже сегодня - в частности, в медицине.

Общее количество гелия-3 в атмосфере Земли оценивается всего лишь в 35 000 т. Его поступление из мантии в атмосферу (через вулканы и разломы в коре) составляет несколько килограммов в год. В лунном реголите гелий-3 постепенно накапливался в течение сотен миллионов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04%) значительно выше, чем в земной атмосфере.

Амбициозные планы добычи гелия-3 на Луне, на полном серьезе рассматриваемые не только космическими лидерами (Россия и США), но и новичками (Китай и Индия), связаны с надеждами, которые возлагают на этот изотоп энергетики. Ядерная реакция 3 Не + D → 4 Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4 Не + n.

К этим преимуществам относится в десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведенную радиоактивность и деградацию конструкционных материалов реактора. Кроме того, один из продуктов реакции - протоны - в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии. При этом и гелий-3, и дейтерий неактивны, их хранение не требует особых мер предосторожности, а при аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю. Есть у гелий-дейтериевой реакции и серьезный недостаток - значительно более высокий температурный порог (для начала реакции требуется температура порядка миллиарда градусов).

Хотя все это дело будущего, гелий-3 чрезвычайно востребован и сейчас. Правда, не для энергетики, а для ядерной физики, криогенной промышленности и медицины.

Магнитно-резонансная томография

С момента своего появления в медицине магнитно-резонансная томография (МРТ) стала одним из основных диагностических методов, позволяющих без всякого вреда заглянуть «внутрь» различных органов.

Примерно 70% массы человеческого тела приходится на водород, ядро которого, протон, обладает определенным спином и связанным с ним магнитным моментом. Если поместить протон во внешнее постоянное магнитное поле, спин и магнитный момент ориентируются либо вдоль поля, либо навстречу, причем энергия протона в первом случае будет меньше, чем во втором. Протон можно перевести из первого состояния во второе, передав ему строго определенную энергию, равную разнице между этими энергетическими уровнями, - например, облучая его квантами электромагнитного поля с определенной частотой.

Как работает МРТ

МР-томограф обнаруживает скопления протонов - ядер атомов водорода. Поэтому МР-томография показывает различия в содержании водорода (в основном воды) в различных тканях. Существуют и другие способы отличать одну ткань от другой (скажем, различия в магнитных свойствах), которые применяются в специализированных исследованиях.

Именно так и устроен МР-томограф, только обнаруживает он не отдельные протоны. Если поместить образец, содержащий большое количество протонов в мощное магнитное поле, то количества протонов с магнитным моментом, направленным вдоль и навстречу полю, окажутся примерно равными. Если начать облучать этот образец электромагнитным излучением строго определенной частоты, все протоны с магнитным моментом (и спином) «вдоль поля» перевернутся, заняв положение «навстречу полю». При этом происходит резонансное поглощение энергии, а во время процесса возвращения к исходному состоянию, называемому релаксацией, - переизлучение полученной энергии, которое можно обнаружить. Это явление и называется ядерным магнитным резонансом, ЯМР. Средняя поляризация вещества, от которой зависит полезный сигнал при ЯМР, прямо пропорциональна напряженности внешнего магнитного поля. Чтобы получить сигнал, который можно обнаружить и отделить от шумов, требуется сверхпроводящий магнит - только ему под силу создать магнитное поле с индукцией порядка 1–3 Тл.

Магнитный газ

МР-томограф «видит» скопления протонов, поэтому отлично подходит для изучения и диагностики мягких тканей и органов, содержащих большие количества водорода (в основном в виде воды), а также дает возможность различать магнитные свойства молекул. Таким способом можно, скажем, отличить артериальную кровь, содержащую гемоглобин (основной переносчик кислорода в крови), от венозной, содержащей парамагнитный дезоксигемоглобин, - именно на этом основана фМРТ (функциональная МРТ), позволяющая отслеживать активность нейронов головного мозга.

Но, увы, такая замечательная методика, как МРТ, совершенно не приспособлена для изучения заполненных воздухом легких (даже если наполнить их водородом, сигнал от газообразной среды с низкой плотностью будет слишком слаб на фоне шумов). Да и мягкие ткани легких не слишком хорошо видны с помощью МРТ, поскольку они «пористые» и содержат мало водорода.

Можно ли обойти это ограничение? Можно, если использовать «намагниченный» газ - в этом случае средняя поляризация будет определяться не внешним полем, потому что все (или почти все) магнитные моменты будут ориентированы в одном направлении. И это вовсе не фантастика: в 1966 году французский физик Альфред Кастлер получил Нобелевскую премию с формулировкой «За открытие и разработку оптических методов исследования резонансов Герца в атомах». Он занимался вопросами оптической поляризации спиновых систем - то есть как раз «намагничиванием» газов (в частности, гелия-3) с помощью оптической накачки при резонансном поглощении фотонов с круговой поляризацией.

Дышите глубже

Пионерами использования поляризованных газов в медицине стала группа исследователей из Принстона и Нью-Йоркского университета в Стони-Брук. В 1994 году ученые опубликовали в журнале Nature статью, в которой впервые было продемонстрировано изображение легких мыши, полученное с помощью МРТ.

Правда, МРТ не совсем стандартной - методика была основана на отклике не ядер водорода (протонов), а ядер ксенона-129. К тому же газ был не совсем обычным, а гиперполяризованным, то есть заранее «намагниченным». Так родился новый метод диагностики, который вскоре начали применять и в человеческой медицине.

Гиперполяризованный газ (обычно в смеси с кислородом) попадает в самые дальние закоулки легких, что дает возможность получить МРТ-снимок с разрешением на порядок выше лучших рентгеновских снимков. Можно даже построить детальную карту парциального давления кислорода в каждом участке легких и потом сделать заключение о качестве кровяного потока и диффузии кислорода в капиллярах. Эта методика позволяет изучить характер вентиляции легких у астматиков и контролировать процесс дыхания критических пациентов на уровне альвеол.

Достоинства МРТ с использованием гиперполяризованных газов этим не ограничиваются. Поскольку газ гиперполяризован, уровень полезного сигнала оказывается значительно выше (примерно в 10 000 раз). Это означает, что отпадает необходимость в сверхсильных магнитных полях, и приводит к конструкции так называемых слабопольных МР-томографов - они дешевле, мобильнее и гораздо просторнее. В таких установках используются электромагниты, создающие поле порядка 0,005 Тл, что в сотни раз слабее стандартных МР-томографов.

Маленькое препятствие

Хотя первые эксперименты в этой области проводились с гиперполяризованным ксеноном-129, вскоре его заменил гелий-3. Он безвреден, позволяет получать более четкие изображения, чем ксенон-129, имеет в три раза больший магнитный момент, что обусловливает более сильный сигнал в ЯМР. Кроме того, обогащение ксенона-129 из-за близости массы с другими изотопами ксенона - дорогой процесс, да и достижимая поляризация газа существенно ниже, чем у гелия-3. К тому же ксенон-129 обладает седативным эффектом.

Но если слабопольные томографы просты и дешевы, почему же метод МРТ с гиперполяризованным гелием не используется сейчас в каждой поликлинике? Есть одно препятствие. Но зато какое!

Наследие холодной войны

Единственный способ получения гелия-3 - распад трития. Большая часть запасов 3 He обязана своим происхождением распаду трития, произведенного во время ядерной гонки вооружений в период холодной войны. В США к 2003 году было накоплено примерно 260 000 л «сырого» (неочищенного) гелия-3, а к 2010 году осталось только 12 000 л незадействованного газа. В связи с возрастанием спроса на этот дефицитный газ в 2007 году даже было восстановлено производство ограниченных количеств трития, и до 2015 года планируется дополнительно получать по 8000 л гелия-3 ежегодно. При этом годовой спрос на него уже сейчас составляет не менее 40 000 л (из них только 5% используется в медицине). В апреле 2010 года американский Комитет по науке и технологии США сделал вывод, что нехватка гелия-3 приведет к реальным негативным последствиям для многих областей. Даже ученые, работающие в ядерной отрасли США, испытывают трудности с приобретением гелия-3 из запасов государства.

Аукционная цена гелия-3 колеблется в районе $2000 за литр, причем никаких тенденций к снижению не наблюдается. Дефицит этого газа обусловлен тем, что основная часть гелия-3 используется для изготовления нейтронных детекторов, которые применяются в устройствах для обнаружения ядерных материалов. Такие детекторы регистрируют нейтроны по реакции (n, p) - захвату нейтрона и испусканию протона. А чтобы засечь попытки завоза ядерных материалов, таких детекторов требуется очень много - сотни тысяч штук. Именно по этой причине гелий-3 стал фантастически дорог и малодоступен для массовой медицины.

Впрочем, надежды есть. Правда, возлагаются они не на лунный гелий-3 (его добыча остается отдаленной перспективой), а на тритий, образующийся в тяжеловодных реакторах типа CANDU, которые эксплуатируются в Канаде, Аргентине, Румынии, Китае и Южной Корее.

Пройдет совсем немного времени, по меркам жизни человеческой цивилизации, как ископаемые природные богатства будут исчерпаны. Среди возможных кандидатур на замену нефти и газа называют то энергию солнца, то силу ветра, то водород. В последние годы все чаще можно услышать о новом спасении для планеты под названием гелий-3 . Что это вещество можно использовать в качестве сырья для электростанций, додумались относительно недавно.

Общие данные о веществе: свойства

В 1934 оду австралийский физик Марк Олифант, во время работы в Кавендишской лаборатории Кембриджского университета в Англии пришел к замечательному открытию. В ходе первой демонстрации ядерного синтеза при бомбардировке дейтронной мишени, он выдвинул гипотезу о существовании нового изотопа химического элемента под номером 2. Сегодня он же известен как гелий-3.

Он обладает следующими свойствами :

  • Содержит два протона, один нейтрон и два электрона;
  • Среди всех известных элементов он является единственным стабильным изотопом, который имеет больше протонов, чем нейтронов;
  • Кипит при 3,19 по Кельвину (-269,96 градусов Цельсия). Во время кипения вещество теряет половину своей плотности;
  • Момент импульса равен ½, что делает его фермионом;
  • Скрытая теплота парообразования составляет 0,026 КДж/Моль;

Спустя пять лет после открытия Марка Олифанта его теоретические построения получили экспериментальное подтверждение. А еще спустя 9 лет ученым удалось получить соединение в жидком виде . Как оказалось, в таком агрегатном состоянии гелий-3 обладает сверхтекучими свойствами.

Другими словами, при температурах, близких к абсолютному нулю, он способен проникать сквозь капилляры и узкие щели, практически не испытывая противодействия силы трения.

Добыча гелия-3 на Луне

Солнечный ветер на протяжении миллиардов лет нанес в поверхностный слой реголита гигантское количество гелия-3. Согласно оценкам, его количество на земном спутнике может достигать 10 миллионов тонн.

Многие космические державы имеют программу добычи этого вещества для целей последующего термоядерного синтеза:

  • В январе 2006 года российская компания «Энергия» заявила о планах начать геологические работы на Луне к 2020 году. Сегодня будущее проекта находится в подвешенном состоянии, из-за тяжелого экономического положения страны;
  • В 2008 году Индийская организация космических исследований отправила к поверхности земного спутника зонд, одной из целей которого было заявлено изучение гелий-содержащих минералов;
  • Собственные виды на залежи драгоценного сырья имеет и Китай. Согласно планам, предполагается отправлять к спутнику ежегодно три челнока. Энергия, произведенная из этого топлива, с лихвой покроет потребности всего человечества.

Пока остается мечтой, которую можно увидеть разве что в научно-фантастических лентах. Среди них - «Луна» (2009) и «Железное небо» (2012).

В данном видео физик Борис Романов расскажет, в каком виде находится вещество гелий-3 на Луне, возможно ли его оттуда импортировать:

Геохимические данные

Изотоп также присутствует на планете Земля, хотя и в меньших количествах:

  • Это главная составляющая земной мантии, которая была синтезирована еще во время планетообразования. Совокупная ее масса в этой части планеты составляет, по различным оценкам, от 0,1 до 1 миллиона тонн;
  • На поверхность он выходит в результате деятельности вулканов. Так, сопки Гавайских островов выделяют около 300 граммов этого вещества в год. Срединно-океанические хребты - около 3 килограммов;
  • В местах наезда одной литосферной плиты на другую могут находиться сотни тысяч тонн гелиевого изотопа. Извлечь это богатство промышленным способом на современном этапе технологического развития не представляется возможным;
  • Природа продолжает производство данного соединения до сих пор, в результате распада радиоактивных элементов в коре и мантии;
  • В довольно небольших количествах (до 0,5%) его можно найти в некоторых источниках природного газа. Как отмечают эксперты, ежегодно в процессе транспортировки природного газа происходит отделение 26 м 3 гелия-3;
  • Также он присутствует в земной атмосфере. Удельная доля его составляет приблизительно 7,2 частей на триллион атомов прочих газов атмосферы. Согласно последним подсчетам, общая масса атмосферного 3 2 he достигает минимум 37 тысяч тонн.

Современное использование вещества

Практически весь используемый в народном хозяйстве изотоп получают путем радиоактивного распада трития, который бомбардируют нейтронами лития-6 в ядерном реакторе.

На протяжении десятков лет гелий-3 был всего-навсего побочным продуктом при изготовлении боеголовок атомного оружия . Однако после подписания договора СНВ-1 в 1991 году сверхдержавы снизили объемы изготовления ракет, из-за чего продукты производства также пошли на убыль.

Сегодня масштабы производства изотопа находятся на подъеме, поскольку ему нашли новое применение:

  1. Благодаря относительно высокому гиромагнитному соотношению, частицы этого вещества применяются при медицинской томографии легких. Пациент вдыхает газовую смесь, содержащую гиперполяризованные атомы гелия-3. Затем под воздействием лазерного излучения инфракрасного диапазона компьютер рисует анатомические и функциональные изображения органов;
  2. В научных лабораториях данное соединение используется в криогенных целях. Путем его испарения с поверхности холодильника удается достичь значений, близких к 0,2 кельвина;
  3. В последние годы набирает популярность идея использования вещества в качестве сырья для электростанций. Первая подобная установка была построена в 2010 году в долине Теннеси (США).

Гелий-3 как топливо

Второй, пересмотренный подход к использованию контролируемой термоядерной энергии предполагает использование в качестве сырья 3 2 he и дейтерия. Результатом такой реакции будет ион гелия-4 и высокоэнергетические протоны.

Теоретически данная технология обладает такими преимуществами:

  1. Высокий КПД, поскольку для контроля за слиянием ионов используется электростатическое поле. Кинетическая энергия протонов напрямую преобразуется в электричество за счет твердотельного преобразования. Нет необходимости строить турбины, которые используются в АЭС для превращения энергии протонов в тепло;
  2. Более низкие, в сравнении с прочими типами электростанций, капитальные и эксплуатационные затраты;
  3. Ни воздух, ни вода не загрязняются;
  4. Относительно малые габариты благодаря использованию современных компактных установок;
  5. Отсутствует радиоактивное топливо.

Однако критики отмечают значительную «сырость» такого решения. В самом лучшем случае коммерческое использование термоядерного синтеза начнется не ранее 2050 года .

Среди всех изотопов химического элемента с порядковым номером 2 особняком стоит гелий-3. Что это, вкратце можно описать следующими свойствами: он стабилен (то есть не испытывает превращений в результате излучения), обладает сверхтекучими свойствами в жидком виде, имеет относительно малую массу.

Видео про образование гелия-3 во Вселенной

В данном ролике физик Даниил Потапов расскажет, как во Вселенной образовался гелий-3, какую роль в формировании вселенной он играл:

В последнее время, особенно после того, как США усилили темпы работ по своей лунной программе, все сильнее стала муссироваться тема о гелии-3, как основе ядерной энергетики будущего. О данном элементе даже снимают фантастические фильмы. Что же такое гелий-3, где его добыть и какие выгоды он сулит человечеству!

РЕАКТОР БЕЗ РАДИАЦИИ

Гелий-3 (³He) является одним из изотопов гелия, в ядре которого находится один нейтрон, а не два. На Земле запасы гелия-3 составляют 0,000137% от общего количества элементов и оцениваются в 35 тысяч тонн. Практически весь имеющийся в наличии гелий-3 сохранился с момента образования нашей планеты.

Интерес к этому изотопу гелия усилился после того, как стало ясно, что человечество вплотную приблизилось к серьезному энергетическому кризису. Запасы углеводородов подходят к концу, и уже через несколько десятилетий мы их полностью исчерпаем. Альтернативные источники энергии, такие как ветер, Солнце, приливы и отливы, геотермальная активность, не могут покрыть всех потребностей человечества. Остаются еще запасы каменного угля, которых хватит примерно на 200-300 лет. Однако по мере того, как доля угля в современной энергетике будет возрастать, этот срок может существенно сократиться. Кроме того, процессы сжигания и добычи угля серьезно ударяют по экосистеме планеты.

Таким образом, единственным источником энергии, которого хватит надолго, - это энергия, основанная на делении ядер урана. Уже сегодня атомная энергетика занимает почти 7% в мировом энергетическом балансе. И с каждым годом доля ее участия возрастает. Но вместе с этим все серьезнее встает вопрос о главной проблеме всех АЭС - утилизации и хранении радиоактивных отходов, которых с каждым годом становится все больше. И тут идеальным выходом было бы использование топлива, основанного на реакциях термоядерного синтеза с гелием-3.

Дело в этом, что ядерные реакции, протекающие с участием гелия-3, в отличие от других ядерных реакций, идут с выделением не нейтронов, а протонов. Нейтроны - крайне активные частицы, они способны глубоко проникнуть в конструкционные материалы ядерного реактора, разрушая их структуру и делая радиоактивными. Это приводит к тому, что отдельные детали и узлы каждые несколько лет приходится менять, чтобы реактор мог работать в штатном режиме. Кроме того, возникает проблема утилизации и захоронения ядерных отходов.

Протоны же, в отличие от нейтронов, не наводят радиоактивности и не способны проникать внутрь конструкций. Поток протонов - это, по сути, поток водорода. И материалы, из которых созданы узлы реактора, работающего на гелии-3, могут служить десятилетиями. В целом реакция с участием ³He в 50 раз менее радиоактивна, чем обычная реакция взаимодействия дейтерия с тритием (D + T).

Таким образом, главное достоинство гелия-3 не столько в его энергетической ценности, сколько в его практически полной экологической безопасности.

ЛУННЫЕ ЗАЛЕЖИ

Где же можно добывать гелий-3 в необходимых масштабах? На Земле этот изотоп содержится в таких ничтожно малых количествах, что о его промышленной добыче и речи быть не может. Ответ на этот вопрос известен давно - на Луне.

То, что Луна обладает огромными запасами гелия-3, стало известно, когда первые образцы лунного грунта были доставлены на Землю советскими автоматическими аппаратами «Луна» и американскими астронавтами во время выполнения программы «Аполлон».

Относительная концентрация изотопа в лунном грунте оказалась в 1000 раз выше, чем в земных недрах. Причина этого явления кроется в регулярном облучении поверхности Луны корпускулярным излучением Солнца. Дело в том, что, не имея защиты в виде сильного магнитного поля, поверхностный пылевидный слой (реголит) Луны регулярно получает огромную дозу облучения. Во время этого процесса в него внедряется большое количество элементов, в первую очередь изотопы водорода и гелия.

По предварительным оценкам, общие запасы гелия-3 на Луне составляют около миллиона тонн. Такого количества изотопа человечеству хватило бы на тысячу лет. Энергетическая эффектность его такова, что 1 тонна гелия-3 может заменить 20 млн тонн нефти, что позволит в течение года обеспечивать выходную мощность АЭС в 10 ГВт. В одной тонне лунного грунта содержится 10 мг гелия-3, что соответствует энерговыделению 1 м³ нефти. Можно сказать, что поверхность Луны представляет собой сплошной океан нефти. Человечеству нужно 200 тонн ³He ежегодно, потребность российской энергетики оценивается в 20-30 тонн гелия-3 в год.

Однако как бы ни были велики общие запасы ³He, содержание изотопа в лунной почве все равно очень невелико (примерно 10 мг на тонну породы). Таким образом, чтобы обеспечить потребности человечества, нужно вскрывать 20 млрд тонн реголита в год. Учитывая среднюю толщину слоя реголита в 3 м, общая площадь добычи будет составлять 30 на 100 км.

Сегодня, когда доставка даже нескольких сот килограммов груза на Луну считается большим достижением, переработка миллиардов тонн лунного грунта воспринимается как совершенно фантастический проект. Поэтому правильным решением было бы не транспортировка лунного грунта на Землю, а организация на самой Луне полного цикла получения готового изотопа гелия-3 - начиная от добычи породы и заканчивая ее обогащением.

ТРУДНОСТИ ДОБЫЧИ

Впрочем, 20 млрд тонн вскрышных работ лунного грунта только кажутся фантастическим мероприятием. На Земле сейчас добывают порядка 5 млрд тонн угля в год. Объем вскрышных работ земного грунта составляет порядка 50 млрд тонн. То есть нынешние темпы разработки земных недр вполне сопоставимы по масштабам с тем, что нас может ожидать на Луне. Б то же время на Луне не будет стоять проблем, связанных с экологическими последствиями проведения вскрышных работ, поэтому общая эффективность разработки лунного грунта может быть в несколько раз выше, чем на Земле. Не стоит забывать и о том, что сила тяжести на Луне в шесть раз меньше, чем на Земле. Это, в свою очередь, позволит серьезно увеличить скорость выработки грунта.

Что же касается технической стороны вопроса, то земная наука и техника достаточно развиты для того, чтобы начать организацию процесса переноса части горно-обогатительной и добывающей промышленности на Луну. Конечно, этот процесс займет не один десяток лет, поэтому чем раньше мы его начнем, тем быстрее получим необходимый результат.

Уже сейчас надо начинать подготовительный этап, содержащий в себе геологоразведочные и испытательные работы, которые должны проводиться в рамках общих исследовательских работ на Луне. Одними из первых должны быть работы по изучению внутреннего строения Луны, запланированные в программе «Луна-Глоб». В ходе выполнения этой программы планируется с помощью химико-минералогической интерпретации сейсмических данных получить данные о химическом строении нижней мантии Луны, а также определить размеры лунного ядра.

Следующим этапом работ будет доставка фунта с Луны на Землю. Основной упор здесь нужно сделать на беспилотные аппараты, которые будут собирать образцы лунного грунта и доставлять их к посадочным модулям. Кроме того, луноходам можно поручить задачу создания долговременной сети сейсмических датчиков, импульсы которых позволят получить исчерпывающее представление о том, что происходит в недрах Луны. Одновременно с этим необходимо будет проводить картирование лунной поверхности на предмет содержания гелия-3.

РЕАКТОР НА ГЕЛИИ-3

И наконец, остается последний вопрос - создание термоядерного реактора, в работе которого используется топливо на основе гелия-3. Сегодня такой реактор существует только в теории. Хотя работы над управляемым термоядерным синтезом уже переходят в практическую плоскость. Во Франции полным ходом идет строительство экспериментального термоядерного реактора ИТЭР, который будет использовать в своей работе реакцию синтеза дейтерия с тритием. Стоимость стройки изначально оценивалась в 5 млрд евро, а первую очередь реактора планировалось пустить к 2016 году. Однако позже расходы возросли вдвое, а срок начала эксплуатации сдвинулся на 2020 год. ИТЭР будет представлять собой сооружение высотой 60 метров и массой около 23 тысяч тонн. Особое внимание при его создании было уделено проблеме радиационной безопасности. Однако для работы с гелием-3 реактор типа ИТЭР не годится. Дело в том, что для такой реакции необходимо будет создать температуру, которая в три раза выше, чем температура в активной зоне ИТЭР.

Учитывая, что с момента открытия ядерных реакций и до создания термоядерного реактора типа ИТЭР человечество шло долгих 50 лет, можно предположить, что создание реактора на гелии-3 займет примерно 20-30 лет.

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3». Это заявление главы ракетно-космической корпорации «Энергия» Николая Севастьянова, если и не потрясло воображение законопослушных россиян (им сейчас, как раз, накануне нового отопительного сезона только с гелием-3 разбираться), то уж воображение специалистов и людей заинтересованных не оставило равнодушным.

Оно и понятно: при, мягко говоря, не блестящем состоянии дел в отечественной аэрокосмической отрасли (космический бюджет России в 30 раз меньше, чем в США и в 2 раза меньше, чем в Индии; с 1989 по 2004-й годы мы запустили всего 3 исследовательских КА), вдруг, вот так, ни больше, ни меньше – россияне будут добывать гелий-3 на Луне! Напомню, что, теоретически, этот легкий изотоп гелия способен вступать в термоядерную реакцию с дейтерием. Соответственно, термояд многие ученые считают потенциально безграничным источником дешевой энергии. Однако проблемка есть: гелий-3 составляет менее одной миллионной доли от общего количества гелия на Земле. А вот в лунном грунте этот легкий изотоп содержится в изобилии: по оценке академика Эрика Галимова – около 500 млн. тонн...

Говорят, в свое время в США перед входом в Диснейленд висел огромный плакат: «Мы и наша страна можем все, единственное, что нас лимитирует, это границы нашего воображения». Все это было недалеко от истины: быстрый и эффективный атомный проект, фантастически успешная лунная программа, стратегическая оборонная инициатива (СОИ), вконец доконавшая советскую экономику. ...

По существу, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед научным сообществом задач на грани воображения. Это касается и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек┘ Кстати, и у нас был свой «плакат» перед Диснейлендом – «Мы рождены, чтоб сказку сделать былью!»

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, – подчеркнул в беседе со мной доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. – Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна – источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии┘ Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

Но все дело в том, что сейчас на Земле нет технологии – и в ближайшие, как минимум, 50 лет не предвидится ее появления, – сжигания гелия-3 в термоядерной реакции. Нет даже эскизного проекта такого реактора. Строящийся сейчас во Франции международный термоядерный реактор ITER проектируется на «сжигание» изотопов водорода – дейтерия и трития. Расчетная температура «поджига» термоядерной реакции – 100–200 млн. градусов. Для использования гелия-3 температура должна быть на порядок-два выше.

Значит, руководитель крупнейшей в России ракетно-космической корпорации Николай Севастьянов, извините за выражение, пудрит нам мозги своим гелием-3? Не похоже. Зачем!?

«Космическая отрасль, естественно, заинтересована в таком крупном и дорогостоящем проекте, – считает Александр Захаров. – Но с точки зрения его практического использования, абсолютно очевидно, что это преждевременно».

Чтобы реализовать проект «гелий-3» нужно создавать специальную программу дополнительных исследований Луны, запускать целую эскадру космических аппаратов, решать вопросы с добычей гелия-3, его переработкой┘ Это разорит страну почище всякой СОИ.

«Я не хочу сказать, что Луна с научной точки зрения полностью закрыта – там остались и научные задачи, – подчеркивает Александр Захаров. – Но, как говорится, этим надо заниматься step by step, не забываю о других научных задачах. А то мы как-то шарахаемся: как только американцы объявили о программе пилотируемого полета на Марс – и сразу мы заявляем, что тоже готовы этим заниматься. Услышали про лунные программы – давайте тоже этим заниматься┘ У нас нет обдуманной, взвешенной, стратегической национальной задачи».

Вот, опять вернулись к тому, с чего начали, – к стратегической национальной задаче. Беда в том, что в отличие от американцев мы лимитированы не столько своим воображением – с этим-то, как показывает заявление Николая Севастьянова, у нас все в порядке. Но вот на программу «гелий-3» (условно назовем ее так), по самым скромным расчетам, потребуется 5 млрд. долл. на пять лет исследований.

С чисто научной точки зрения, в проблеме термояда на основе ТОКАМАКов, даже несмотря на принятое решение о строительстве международного экспериментального реактора ITER, наметился некий застой. (Впрочем, это тема для отдельного разговора.) Как мне кажется, проблема гелия-3 для некоторой части влиятельного термоядерного лобби – новая ниша для реанимации и реализации профессиональных амбиций.

Мало того – и это уж совсем сенсационная вещь, и только поэтому я не начал с нее свою статью, - как нам сообщил эксперт из аэрокосмической отрасли, на российский проект добычи легкого изотопа гелия на Луне выделен┘ 1 млрд. долларов! Деньги эти, якобы, имеют американское происхождение.

Несмотря на всю замысловатость подобной комбинации, концы с концами в ней сходятся вполне успешно. Чтобы добиться выделения 104-х млрд. долл. на объявленную недавно программу создания лунной базы, Национальному агентству США по аэронавтике и космическим исследованиям надо было показать, что «стратегические конкуренты» тоже не дремлют. То есть, «российский» миллиард - это, своего рода, накладные расходы NASA... Отсюда и необъяснимый рациональными мотивами всплеск интереса к добыче гелия-3 в России.

Если это действительно так, то лишний раз нам всем придется убедиться в справедливости формулы, напечатанной лет десять назад в журнале Physics Today. Вот она: «Ученые – это не бескорыстные искатели истины, а скорее участники острой конкурентной борьбы за научное влияние, победители которой срывают банк».

Гелий 3 - энергия будущего

Все мы знаем, что нефть у нас не бесконечная, а исследования доказали еще ее органическое происхождение – это значит нефть относится к невозобновляемым ресурсам. Нефть - горючая маслянистая жидкость, являющаяся смесью углеводородов, красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть, имеет специфический запах, распространена в осадочной оболочке Земли; одно из наиважнейших полезных ископаемых. Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть - жидкие углеводороды. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля ее в общем потреблении энергоресурсов составляет 48 %.Именно поэтому нефть как источник энергии, так важна для человечества.

На текущий момент основными источниками энергии являются: ТЭЦ, ТЭС, АЭС.

На графике четко видно что лидирующем положением может похвастаться только ТЭЦ, которые в качестве топлива используют невозобновляемые ресурсы такие как: нефть (все виды топлива получаемые из нефти), уголь, газ.

На долю ГЭС приходится лишь 20%, при этом даже если в мире начнуть использовать максимальное количество рек под ГЭС, суммарная выделяемая энергия всеми гидроэлектростанциями не способна будет удовлетворить потребности человества.

Атомные электростанции занимают лишь 17% мирового энергопроизводства, использование реакции деления атома влечет за собой серьезные последствия в виде радиации.

Сейчас активно в качестве альтернативных сырьевых ресурсов используются газ, уголь, торф, энергия деления атома (атомная энергетика).Но мы прекрасно понимаем что они не способны заменить полностью нефть как сырья для получения энергии. Да и запасы того же природного газа не бесконечны, используя данные альтернативные сырьевые ресурсы мы лишь отсрочим энергетический кризис.

Ученые прекрасно осознают наступающую на пятки проблему, и создают и изучают альтернативные источники энергии. На текущий момент ученые работают над проектами подразумевающие использование:

• Биогаза

• Биодизельного топливо

• Биоэтанола

• Ветроэнергетики

• Водородная энергетики

• Геотермальная энергии

• Солнечных элементов

• Атомной энергетики

• Термоядерная энергетика (на основе использования Гелия 3)

Основная часть

Итак, рассмотрим каждую альтернативу в отдельности.

2.1.Биогаз

Биометан – газ, полученный при брожении органических отходов (биогаз). Наиболее целесообразной сферой применения биогаза является отопление животноводческих ферм, жилых помещений и технологических участков. Также биогаз можно использовать в качестве моторного топлива. Излишки полученного топлива можно перерабатывать в электроэнергию с помощью дизельных генераторов.

Биометан имеет низкую объемную концентрацию энергии. При нормальных условиях теплота сгорания 1 л. биометана составляет 33 - 36 кДж.

Биометан имеет высокую детонационную стойкость, что позволяет снижать концентрацию вредных веществ в отработанных газах и уменьшать количество отложений в двигателе.

Биометан как моторное топливо должен применяться в транспортных двигателях либо в сжатом, либо в сжиженном состоянии. Однако основным сдерживающим фактором широко применения сжатого биометана в качестве моторного топлива, как и в случае со сжатым природным газом, является транспортировка значительной массы топливных баллонов.

За рубежом проблеме получения и использования биогаза уделяют большое внимание. За короткий срок во многих странах мира возникла целая индустрия по производству биогаза: если в 1980 г. в мире насчитывалось около 8 млн. установок для получения биогаза суммарной мощностью 1,7-2 млрд. куб. м в год, то в настоящее время данные показатели соответствуют производительности по биогазу только одной страны - Китая.

К примуществам биогаза можно отнести:

• Получение энергии без дополнительной эмиссии CO 2 .

• Закрытые системы не пропускают или незначительно пропускают запахи.

• Улучшение торговой ситуации и снижение зависимости от импортёров энергии.

• Электричество на биогазе можно вырабатывать 24 часа в сутки.

• Отсутствие зависимости от ветра/воды/электричества.

• Улучшение удобряемости почвы.

2.2 Биодизельное топливо

Биодизель - топливо на основе растительных или животных жиров (масел), а также продуктов их этерификации. Применяется на автотранспорте в виде различных смесей с дизельным топливом.

Экологические аспекты применения:

Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения рек и озёр.

К преимуществам биодизеля можно отнести:

• увеличение цетанового числа и смазывающей способности, что продлевает жизнь двигателя;

• значительное снижение вредных выбросов (включая СО, СО2, SO2, мелкие частицы и летучие органические соединения);

• способствование очистке инжекторов, топливных насосов и каналов подачи горючего.

Недостатки

В холодное время года необходимо подогревать топливо идущее из топливного бака в топливный насос или применять смеси 20% БИОДИЗЕЛЯ 80% солярки.

2.3.Биоэтанол

Биоэтанол – это жидкое спиртовое топливо, пары которого тяжелее воздуха. Он вырабатывается из сельскохозяйственной продукции, содержащей крахмал или сахар, например, из кукурузы, зерновых или сахарного тростника. В отличие от спирта, из которого производятся алкогольные напитки, топливный этанол не содержит воды и производится укороченной дистилляцией (две ректификационные колонны вместо пяти) поэтому содержит метанол и сивушные масла, а также бензин, что делает его непригодным для питья.

Топливный биоэтанол производится почти так же, как и обычный пищевой спирт для производства алкогольных напитков, но есть несколько существенных отличий.

Этанол можно производить из любого сахаро- и крахмало-содержащего сырья: сахарного тростника и свеклы, картофеля, топинамбура, кукурузы, пшеницы, ячменя, ржи и тд.

К примуществам биоэтанола можно отнести:

Этанол имеет высокое октановое число

Биоэтанол разлагаем и не загрязняет природные

водные системы

10% этанола в бензине снижает токсичность выхлопа

снизить выбросы СО на 26%, выбросы оксидов азота

на 5%, аэрозольных частиц на 40%.

Этанол является единственным возобновляемым

жидким топливом, использование которого в

качестве добавки к бензину не требует изменение

конструкции двигателей

Особо ярко выраженных недостатков не имеет.

2.4. Ветроэнергетика

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра, фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогененератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т.п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Преимущества:

• Экологически чисто.

• Безопасно для человека (нет радиации, отходов).

Основные недостатки:

Низкая плотность энергии, приходящейся на единицy площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц.

2.5. Водородная энергетика

Водородная энергетика - направление выработки и потребления энергии человечеством, основанное на использования водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в кругооборот водородной энергетики). Существует несколько способов производства водорода:

• Из природного газа

• Газификация угля:

• Электролиз воды (*обратная реакция)

• Водород из биомассы

Преимущества:

• экологическая чистота водородного топлива.

• возобновляемость.

• чрезвычайно высокий КПД - 75%, что почти в 2,5 раза выше, чем у самых современных установок, работающих на нефти и газе.

Есть у водорода и более серьезные недостатки. Во-первых, в свободном газообразном состоянии он в природе не существует, то есть его нужно добывать. Во-вторых, водород, как газ, довольно опасен. Его смесь с воздухом сначала незримо "горит", то есть выделяет тепло, а потом легко детонирует от малейшей искры. Классический пример водородного взрыва - чернобыльская авария, когда в результате перегрева циркония и попадания на него воды образовался водород, который потом и сдетонировал. В-третьих, водород нужно где-то хранить, причем в больших емкостях, поскольку он имеет низкую плотность. А сжимать его можно только под очень высоким давлением, приблизительно в 300 атмосфер.

2.6. Геотермальная энергия

Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Эта температура постепенно снижается от горячего внутреннего ядра, где, как полагают учёные, металлы и породы могут существовать только в расплавленном состоянии, до поверхности Земли. Геотермальная энергия может быть использована двумя основными способами - для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятий. Для какой из этих целей она будет использоваться, зависит от формы, в которой она поступает в наше распоряжение. Иногда вода вырывается из-под земли в виде чистого “сухого пара”, т.е. пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии. Конденсационную воду можно возвращать в землю и при ее достаточно хорошем качестве - сбрасывать в ближний водоем.

Преобразование термальной энергии океана.

Идея использования разности температур океанских вод для производства электроэнергии возникла около 100 лет назад, а именно в 1981 году. Французский физик Жак Д, Арсонваль опубликовал работу о солнечной энергии морей. В то время было уже известно многое о способности океана принимать и аккумулировать тепловую энергию. Был известен и механизм рождения океанских течений и основные закономерности образования температурных перепадов между поверхностными и глубинными слоями воды.

Использование перепада температур возможно по трём основным направлениям: непосредственное преобразование на основе термоэлементов, преобразование теплоты в механическую энергию в тепловых машинах и превращение в механическую энергию в гидромашинах с использованием разности плотностей тёплой и холодной воды.

Преимущества:

• они практически не нуждаются в техническом обслуживании.

• Одно из преимуществ геотермальной электростанции состоит в том, что по сравнению с электростанцией, сжигающей органическое топливо, она выделяет примерно в двадцать раз меньше углекислого газа при производстве такого же объёма электричества, что снижает её влияние на глобальную окружающую среду.

• Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Какие проблемы возникают при использовании подземных термальных вод? Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

2.7. Солнечные элементы

Принципы работы солнечных элементов:

Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния.

В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные СЭ из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются.

Преимущества:

• Энергия солнца почти бесконечна

• Экологически чисто

• Безопасно для человека и природы

Недостатки: Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.

2.8.Атомная энергетика

Ядерная энергия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.К примеру при делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВтч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер используется в ядерных реакторах.

Преимущества:

• низкие и устойчивые (по отношению к стоимости топлива) цены на электроэнергию;

• среднее воздействие на экологическую среду.

Недостатки атомных станций:

• Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

• Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

• При низкой вероятности инцидентов, последствия их крайне тяжелы

• Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Все выше перечисленные альтернативы нефти имеют один, но очень существенный недостаток, они НЕ способны ПОЛНОСТЬЮ заменить нефть как источник энергии. Лишь применением термоядерной энергии может помочь в данной ситуации.

2.9.Термоядерная энергетика

Термоядерная энергия с участием гелия 3 – это безопасная и качественная энергия.

Термоядерные реакции. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций. Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития.

Если использовать в термоядерном реакторе дейтерия с изотопом гелия-3 вместо применяемых материалов в ядерной энергетике. Интенсивность нейтронного потока падает в 30 раз - соответственно, можно без труда обеспечить срок службы реактора в 30-40 лет (соответственно уменьшается количество выделяемой радиации). После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

Так в чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы - примерно 4000 т. На самой Земле его еще меньше - около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных - практически неисчерпаемых запасах!

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна», показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше - 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно, для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С - почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, - которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Если учесть, что нефть кончится через 35-40 лет, то у нас достаточно времени, чтобы реализовать подобный проект. И именно та страна, которая сможет его реализовать, в будущем будет лидером, а если объединить усилия можно добиться большего результата и в более быстрые сроки.

И так, почему термоядерная энергия? Потому что это:

Крупномасштабный источник энергии с избыточным и доступным всюду топливом.

Очень низкое глобальное воздействие на окружающую среду – Нет эмиссии СО2.

- "Повседневное действие" электростанции не требует транспортировки радиоактивных материалов.

Электростанция безопасна, без возможности “расплавления” или “неуправляемой реакции”.

Нет радиоактивных отходов, что не создает проблему для будущих поколений.

Это Выгодно: Для производства 1 Гвт энергии требуется приблизительно 100 кг дейтерия и 3 тонны природного лития, чтобы использовать в течение целого года, производя приблизительно 7 миллиардов Квт час

3.Заключение

И так, энергия – это важный ресурс необходимый для комфортного существования человечества. А добыча энергии – одна из главных проблем человечества. Сейчас активно используется нефть –как источник электрической и топливной энергии.Но она не бесконечна, и запасы ее с каждым годом только уменьшаются. А текущие разработанные альтернативы – не позволяют полностью заменить нефть или же обладают серьезными недостатками.

Единственным на сегодняшний день источником энергии, способным давать необходимое количество энергии для всего человечества и при этом не иметь серьезные недостатков – является термоядерная энергия на основе использования гелия 3. Технология получения энергии из данной реакции трудоемка и требует больших вложений, но получаемая таким образом энергия – экологически чистая и исчисляется в миллиардах киловатт.

Если получать дешевую и экологически чистую энергию, можно максимально заменить нефть, к примеру отказаться от бензиновых двигателей в пользу электрических, производить тепло с использование электричества и пр.Тем самым нефти – как сырьевого ресурса для химического производства, хватит человечеству еще на долгие столетия.

Поэтому на луне (которая является основным источников гелия 3) необходимо создать промышленность. Чтобы создать промышленность, нужно иметь план развития, а это дело нескольких лет и чем раньше начать – тем лучше. Потому что, если придется делать это уже в безвыходной ситуации (во время энергетического криза – к примеру), срочно, это обернется совсем другими расходами.

А та страна, которая быстрее будет развиваться в этом направлении – в будущем станет лидером. Т.к за энергией – будущее.

4.Список использованной литературы

1. http://ru.wikipedia.org/ - всемирная энциклопедия

2. http://www.zlev.ru/61_59.htm - Журнал «Золотой Лев» № 61-62 - издание русской консервативной мысли, Когда кончится нефть?

3. http://www.vz.ru/society/2007/11/25/127214.html -ВЗГЛЯД / Когда кончится нефть

4. http://vz.ru/economy/2007/11/1/121681.html - ВЗГЛЯД / В мире кончается нефть

5. http://bio.fizteh.ru/departments/physchemplasm/topl_element.html ->Альтернатива нефти?. Факультет молекулярной и биологической физики МФТИ. "Физтех- Портал", "Физтех-центр"

6. http://encycl.accoona.ru/?id=74848 - ЯДЕРНАЯ ЭНЕРГИЯ - Интернет-энциклопедия, толковый словарь.

7. http://www.vepr.ru/show.html?id=7 -Откуда берется электричество (история возникновения)

8. http://www.bioenergy.by/mejdu_1.htm -Энергия биомассы. Проект ПРООН/ГЭФ BYE/03/G31 в Беларуси

9. http://bibliotekar.ru/alterEnergy/37.htm - Достоинства и недостатки ветроэнергетики. Принципы преобразования ветровой энергии. Ветроэнергетика

10. http://www.smenergo.ru/hydrogen_enegry/ - Водородная энергетика. Энергия и энергетика.

11. http://works.tarefer.ru/89/100323/index.html Первичные источники питания и термоядерная энергия

12. http://tw.org.ua/board/index.php?showtopic=162 -Термоядерная энергия

13. http://www.helium3.ru/main.php?video=yes - Гелий -3, Helium-3

14. http://razrabotka.ucoz.ru/publ/4-1-0-16 - ГЕЛИЙ-ТРИ - ЭНЕРГИЯ БУДУЩЕГО - лунная программа - Каталог статей - Разработка

15. http://www.fp7-bio.ru/presentations/fisheries/bioetanol.pdf/at_download/file - энергия будущего

16. http://www.scienmet.net/ - Ветрогенератор, ветроэнергетика

17. http://oil-resources.info - топливные ресурсы

18.http://ru.wikipedia.org/wiki/Водородная_энергетика.

19.http://www.ruscourier.ru/archive/2593 -недостатки водорода

20. http://www.intersolar.ru/geothermal/pressa/rbsgeo.html - Энергия из глубин - www.intersolar.ru

21.http://web-japan.org/nipponia/nipponia28/ru/feature/feature09.html - НИППОНИЯ No.28 15 марта 2004г.

22. http://www.kti.ru/forum/img/usersf/pic_41.doc - альтернативные источники энергии

23. http://www.rosnpp.org.ru/aes_preimush.shtml - атомные электростанции

24. http://www.atomstroyexport.ru/nuclear_market/advantage/ - атомная энергия

25. http://solar-battery.narod.ru/termoyad.htm - термоядерная энергия в действии

26.http://business.km.ru/magazin/view.asp?id=7B07CB0288D54DC0AC68C60AF246D693 - Бизнес KM.RU. Будущее российской энергетики - за биотопливом и термоядерной энергией




Статьи по теме